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Outlier Detection using Generalized Linear Model in Malaysian Breast Cancer Data
(Pengesanan Nilai Tersisih menggunakan Model Linear Teritlak dalam Data Kanser Payudara Malaysia)

M. NAWAMA, A.I.N. IBRAHIM*, I.B. MOHAMED, M.S. YAHYA & N.A.M. TAIB

ABSTRACT

We consider the problem of outlier detection in bivariate exponential data fitted using the generalized linear model via 
Bayesian approach. We follow closely the work outlined by Unnikrishnan (2010) and present every step of the detection 
procedure in details. Due to the complexity of the resulting joint posterior distribution, we obtain the information on 
the posterior distribution from samples generated by Markov Chain Monte Carlo sampling, in particular, using either 
the Gibbs sampler or the Metropolis-Hastings algorithm. We use local breast cancer patients’ data to illustrate the 
implementation of the method.
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ABSTRAK

Kami mempertimbangkan masalah pengesanan nilai tersisih dalam data bivariat eksponen dengan menggunakan model 
linear teritlak melalui pendekatan Bayesian. Kami mengikuti secara rapat kajian yang digariskan oleh Unnikrishnan 
(2010) dan membentangkan setiap langkah prosedur pengesanan secara terperinci. Disebabkan kerumitan taburan 
posterior tercantum yang terhasil, kami mendapatkan maklumat mengenai taburan posterior tersebut daripada sampel 
yang dijana oleh pensampelan Markov Chain Monte Carlo, khususnya, menggunakan sama ada kaedah pensampelan 
Gibbs atau algoritma Metropolis-Hastings yang umum. Kami menggunakan data tempatan iaitu data pesakit kanser 
payudara untuk menggambarkan pelaksanaan kaedah tersebut.

Kata kunci: Algoritma Metropolis-Hastings; Bayesian; kaedah pensampelan Gibbs; nilai tersisih

INTRODUCTION

The existence of outliers in sample data is a common 
phenomenon in data analysis. Barnett and Lewis (1983) 
reviewed the literature on outliers in various types of 
statistical data. Outlier refers to an observation with 
abnormal properties compared to the others such as being 
surprisingly far from the main data set or having large 
residual (Anscombe & Guttman (1960) and Ferguson 
(1961)). 
 In recent years, there has been much interest in 
the development of outlier detection methods using 
Bayesian approach. The approach basically differs from 
the traditional non-Bayesian methods in their basic 
concepts and the use of relevant information such as prior 
probabilities. In the Bayesian set up, Freeman (1980) 
defined an outlier as ‘any observation that has not been 
generated by the mechanism that generated the majority 
of the observation in the data set’. In other words, the 
detection of outliers in this framework is reduced to the 
problem of estimating the parameters of the distribution of 
the contaminated observations (Bayarri & Morales 2003). 
Other works along these lines can also be found (Marshall 
& Spiegelhalter 2007; Page & Dunson 2011; Pettit 1994). 
This idea can also be extended to identify outliers in 
bivariate data via generalized linear modeling (GLM). 
William (1987) employed the one-case deletion approach 

by looking at the changes in the deviance of a GLM when a 
single case is deleted from the data. Kuhnt and Pawlitschko 
(2003) assumed a particular GLM as the model under the 
null hypothesis for a regular data set and derived the rules 
for outlier identification. It is a fact that the resulting 
joint posterior distributions from these GLMs are often 
very complex and intractable. Therefore, a way to obtain 
information from these models is to generate samples by 
using simulation methods such as Markov chain Monte 
Carlo (MCMC) sampling. For a GLM, Bayesian inference 
using MCMC sampling allows simultaneous handling of 
the outlier detection and parameters estimation. Zeger and 
Karim (1991) presented a GLM with random effects model 
in Bayesian framework and used MCMC and Gibbs sampler 
to overcome the computational limitation, while Ishwaran 
(1999) applied the hybrid Monte Carlo for fitting Bayesian 
GLM with canonical link. Unnikrishnan (2010) applied 
the reversible jump MCMC and Metropolis-Hastings (MH) 
algorithm without giving details on the resulting posterior 
distributions of the multi-parameter set-up.
 In this paper, we follow closely the work outlined by 
Unnikrishnan (2010) by presenting the steps in detail. We 
apply the proposed method to a local breast cancer study 
which motivates the methodological development of this 
research. The paper is organized as follows: The modified 
GLM with outlier is described in the next section; the local 
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breast cancer study and the application and implementation 
of the outlier detection using GLM via Bayesian approach to 
this data set are discussed in detail in the following sections 
where we consider the case of single or multiple outliers; 
and the conclusions are given in the final section.

MODIFIED GLM WITH OUTLIER

We follow closely the general theory proposed by 
Unnikrishnan (2010). Let  ℵ = {1, …, N} be a finite 
population with known N. For each unit  i ∈ ℵ, we have 
the real valued response variable yi and known p × 1  vector 
of explanatory variables  xi where w'i = (xi1 … xip). 
  Assume that a random sample of size n is obtained 
with a number of suspected outliers. Let vk be the set of 
all outlying observations, where k denotes the number of 
outliers. We consider the models with/without outliers 
based on GLM such that 

 
i ∈ ℵ – vk

 (1)

where θi is a location parameter; φi and δ are scale 
parameters; and c(.), d(.) are known functions. The 
parameters θi are modelled through a specific link function 
h(.) given by 

 h(θi) = xi'β + εi,          i = 1, …, N (2) 

where β' = (β1  …  βp) and the error components εi's are 
independently and normally distributed. Consequently, 
we can write h(θi)|σ

2 ~ N(xi' β, σ2). Commonly, we 
usually assume that the model have the same mean for 
all observations but we expect to see higher variance for 
outlying observations, that is, when δ > 1.

LOCAL BREAST CANCER DATA

Breast cancer is the most common cancer in Malaysia 
with the incidence rate for females of 47.4 per 100,000 
women. Only recently the breast cancer specific survival 
information in Malaysia is available through the National 
Cancer Registry program under the purview of the Ministry 
of Health Malaysia. One of the established Breast Cancer 
Centre in the country is situated at the University of Malaya 
Medical Centre (UMMC) Kuala Lumpur. The UMMC is a 900 
bed tertiary public hospital located in urban Kuala Lumpur. 
Prospective cohort studies of women with breast cancer 
treated in the UMMC are considered. The cohort comprises 
of patients who are diagnosed from year 1998 to 2002 and 
are followed up until March 2006. Patients underwent 
surgery and adjuvant chemotherapy under the care of general 
surgery and then followed by radiotherapy in UMMC. The 
information collected from the patients consists of race, age, 
date of diagnosis and pathological characteristics of tumour. 
In addition, the survival times and status of patients are 

recorded at the end of the study. The mortality information 
is confirmed by referring to the record in the National 
Registry of Births and Deaths. The data set has been used 
in several other papers including Taib et al. (2011, 2008). 
For our case, we consider the size of tumour as independent 
variable x and survival time to death in months from first 
diagnosis of the disease as dependent variable y. Only 
patients who registered in 2000 with age 60 years old and 
above are considered. The scatter plot of the data with the 
exponential fitted curve is given in Figure 1. It can be seen 
that the data appear to follow the exponential distribution, 
with one extreme observation a candidate to be an outlier. 
It is of interest to identify any outliers using the modified 
model (1) in the Bayesian framework.

FIGURE 1. Plot of patients’ survival time versus size of tumour

THE MODEL

By choosing the appropriate functions for c(.), d(.) and 
taking  φi to be similar for all i, the appropriate model to 
study the exponential relationship between y and x in the 
present data set corresponding to the general model (1) 
is given by:

  (3) 

with the link function log θi = β(xi – ) + εi, where  is 
the mean of the sample. We intend to detect outlying 
observation using the hierarchical Bayesian approach. 
Hence, we consider the following hierarchical prior 
distributions of the parameters: 
        
  

 (4)
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Now, the joint likelihood function is given by: 

 
 

θ
  (5)

Correspondingly, from the result obtained in (4) and (5), 
the full joint posterior distribution for the parameters θ, 
σ2, β, φ, δ, vk is given by: 

 
 

θ

 

  (6) 

 It is clear that the full joint posterior distribution is 
intractable. Hence, we employ the MCMC sampling method, 
in particular, using Gibbs sampler with MH algorithm in 
the outlier detection procedure.

SAMPLING METHODS OF THE PARAMETERS

Note that model (3) involves multiple parameters that are 
structured hierarchically such that the dependency of the 
parameters is reflected in the joint probability distribution. 
The exact conditional posterior distributions of some of 
the parameters can be specified directly from the resulting 
joint posterior distribution (6). Therefore, we can sample 
directly from these conditional posterior distributions; in 
other words, using Gibbs sampling. For the rest, we employ 
the MH algorithm for sampling purposes. The sampling 
methods for each of the parameters θ, σ2, β, φ, δ, vk are 
given in detail below. The sequence of the process is chosen 
to satisfy the hierarchical dependency of model (3).

PARAMETER σ2

Looking at (6) and letting γ = σ–2, the conditional posterior 
distribution for parameter γ given θ, σ2, β, φ, δ, vk is 
given by:

 
θ

 The posterior conditional distribution for γ is 

therefore gamma  Hence, 

the conditional posterior distribution for σ2  is the inverse 

gamma with the same parameters as those for γ. Therefore, 
we can sample σ2 directly from the conditional posterior 
distribution.

PARAMETER β

From (6), the conditional posterior distribution for 
parameter β given σ2, θ, φ, δ, vk is given by:

   θθ

 
 Here, we use the MH algorithm to sample from the 
conditional posterior distribution of β as it is intractable. 
We sample the proposal value for β, says βprop, from gamma  

, where gβ(.) denote the density of this proposal 

distribution. Then, using the MH algorithm, the candidate 
βprop  is then accepted with probability

 
θ

θ
 (7)

 The full formula of the acceptance probability above 
is easily obtained by substituting the relevant functions 
into this equation.

PARAMETER δ

In this case, the conditional posterior distribution for 
parameter δ given θ, φ, σ2, β, vk is given by:

 
θ

 We choose the proposal density for δprop as gδ(δ) 
= 1/(δmax – 1), so that δprop has a uniform  distribution. 
When using the MH algorithm, the acceptance probability 
for candidate δprop  can be obtained by replacing the 
corresponding functions in (7).

PARAMETER φ

We now look at the conditional posterior distribution for 
parameter φ given σ2, β, δ, θ, vk. From (6), the conditional 
posterior distribution is given by:

 

Here, we introduce a function ωi where:
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   (8) 

so that 

θ

Thus, φ|σ2, β, δ, θ, vk ~ gamma  

Therefore, we can sample φ directly from this conditional 
distribution.

PARAMETER θ

Next, we obtained the conditional posterior distribution 
for parameter θ given σ2, β, δ, φ, vk such that: 
  

 

 Furthermore, for each θi, we use the function ωi  as 
defined in (8) so that:

  

 
 
      
 Thus, we propose to use a proposal distribution for 
each θi which is lognormal  where gi(.) denotes 
the proposal density. Therefore, using MH algorithm, for 
parameter θ, we update θ1 to θn one at a time, where for 
each θi, the acceptance probability for candidate θiprop  can 
be obtained by replacing the corresponding functions in 
(7).

PARAMETER vk 

Finally, using (6), the conditional posterior distribution for 
parameter vk given σ2, β, δ, φ, θ is:
 

 

θ

 

For a given value of k, let vk = v = {v1, …, vk}. Under the 
priors given in (4), any of the k distinct units are equally 
likely to become outliers. Then, in order to find a new value 
of v, first select a unit at random from v, say , and select 
a unit at random from the complement set vc, say vprop. If 
the proposal is accepted, then  goes out of v  and vprop 
replaces the value ; this will become a new value denoted 
by . Next, using MH algorithm, this state is accepted with 
probability:

 

 The sampling methods involving the sampling of 
values of parameters discussed earlier are repeated for 
a large number of iterations. In order to improve the 
consistency and remove the effects of the initial values, 
a burn-in of reasonable number of iterations is employed. 
From the last part of the sampling method, we have the 
number of times each k combination of observations is 
in the set vk of possible outlier. Hence, we can calculate 
the proportion of iterations such that each k combination 
of observations is in the set vk. We can then regard the 
proportion as the probability of each k combination of 
observations being a set of outliers for a given k. The set 
of observations with a large value of the proportion is 
identified to be an outlier.

RESULTS AND DISCUSSION

We now apply the proposed method on the local breast 
cancer data. We use 100000 iterations, with a burn-in of 
50000 iterations. Here we consider the case when there 
are one (k = 1) or two (k = 2) outliers. The simulated 
values of the parameters σ2, β, and φ when k = 1 are 
shown in Figures 2-4, respectively. It can be seen that the 
shape of the histograms of the three parameters resemble 
that of the gamma distributions. Note that the parameters 
σ2, β, and φ  show similar behaviour for the case when 
k = 2. Figure 5 shows the estimated probability of being 
an outlier for observations 1 to 26, given that k = 1. 
Given that there is one outlier, we identify observation 
26, which has the highest probability (close to 0.20), 
as an outlier as this probability is distinctly higher if 
compared to the other probabilities corresponding to 
the other patients in the data. Given that there are two 
outliers, there are 325 possible sets of observations. We 
found that the probabilities of a set of two observations 
being outliers are small, ranging from 0.008 to 0.001; this 
indicates that the existence of two outliers in this data set 
is highly unlikely. Note that sets involving observation 
26 are at the higher spectrum of the probabilities, with 
observations {21, 26} and {14, 26} having the highest 
probability. We can see that given that there are outliers 
in the data, with high probability observation 26 is an 
outlier in both cases.
 In survival data, many authors have tried to give 
specific meaning to the outlier due to the special features 
of the data. Collet (2003) referred an outlier in survival 
as an individual who has extremely long survival time, 
but the values of the explanatory variables suggested 
the individual should have died earlier and vice versa. 
Nardi and Schemper (1999) and Therneau et al. (1990) 
associated outlier to individuals who ‘died too soon’ or 
‘lived too long’, while Maller and Zhou (1994) identified 
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FIGURE 2. Histogram of the marginal posteriors for σ2 

FIGURE 3. Histogram of the marginal posteriors for β 

FIGURE 4. Histogram of the marginal posteriors for  φ

FIGURE 5. Probability for an observation being outlier 
in Breast Cancer data

outlier as individual who is already ‘immune’ or ‘cured’. 
Using these definitions, patient 26 fits into the definition of 
outliers such that the patient’s survival time is rather long 
even though the size of tumour for this patient is amongst 
the largest in the data set. Such identification enables the 
breast cancer specialists to monitor the background of such 
patients in finding the insight on factors that contribute to 
the improved survival life times for patients with similar 
prognosis.

CONCLUSION

In this paper, we have considered the problem of 
detecting outlier using Bayesian approach in generalized 
linear model. We have shown that with the choice of 
prior distribution for the parameters, we can obtain the 
information from samples generated using MCMC sampling, 
in particular using either the Gibbs sampler or the general  
MH algorithm. When applied to the local breast cancer data, 
observation 26 who has a large size of tumour but with long 
survival time which is 52 months from diagnosed time, is 
identified as an outlier.  
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